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Abstract. The functional formalism, providing a unified treatment of the optical coherence 
theory, is developed for arbitrarily ordered field operators. Multimode ordered expansions 
of operators in terms of boson amplitude operators as well as integral expansions are 
discussed. They form a basis of associating a class of s-ordered probability functionals with 
the density operator of the field. As an application, the distributions of photons and photo- 
electrons are studied. The generalized photo-detection equation of Perina and Horak is 
rederived by using the functional approach. A formula expressing the photocount generating 
function through the characteristic functional of the field is derived. 

1. Introduction 

In the quantum theory of coherence, one considers statistical averages of products of 
the field operators ordered according to a certain rule. For example, the photocount 
statistics is formulated in terms of normally ordered products if the photoelectric detector 
is used as a measuring device, but in the case of the quantum counter anti-normal order 
is involved. The evaluation of expectation values of ordered products may be simplified 
by assigning a correspondence between the field operators and c-number functions and 
also by associating a weight function with the density operator describing the state of the 
field. General ordering theorems were presented by Agarwal and Wolf (1968). Cahill 
and Glauber (1969a, b) analysed various ways of defining correspondences between 
operators and functions. 

When the appropriate weight function specifying the density operator is known, a 
multifold probability distribution PN of the field can be calculated. This permits one to 
find the Nth order correlation functions. In the limit, N + CO, PN becomes a probability 
functional characterizing the field completely. 

In mathematical terms, the probability functional defines a measure on a probability 
measure space in which random processes become measurable functions. This approach, 
however attractive, involves difficulties related to the fact that there is no direct analogue 
in function space to the Euclidean volume in N dimensions. The way out of this predica- 
ment consists in constructing isotropic, centred Gaussian integrals on Hilbert space 
(Segal 1965). The method of functional integration are still not developed to a point 
where techniques for solving explicit problems are available. The only integrals that 
lend themselves to calculation are Gaussian integrals or those that can be reduced to 
them by functional transformations of variables. However, in many problems, 
particularly in quantum field theory and statistical mechanics, the functional approach 
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has been very useful. For our purpose an intuitive understanding of the functional 
integration, such as given in the work of Symanzik (1954) will be sufficient. In $4, we 
deal explicitly with Gaussian integrals. More complicated cases can be interpreted as 
limits of multifold integrals where the number of variables tends to infinity. Throughout 
our exposition, we assume, following Symanzik, the existence of the functional Fourier 
transforms. 

For the normally ordered field operators a relation between the weight function 
of the density operator and the characteristic functional of the field (functional Fourier 
transform of the probability functional) was derived previously (Zardecki 1970). In 
this paper, we extend the functional formalism for an arbitrary kind of ordering. To this 
end, we analyse, first of all, ordered operator expansions in the multi-mode case. As an 
application of the functional approach, we shall rederive the generalized photodetection 
equation of Perina and Horak. The main new result, playing a role in physical applica- 
tions, will be a general formula expressing the generating function of the photoelectron 
distribution in terms of the ordered characteristic functional of the field. 

2. Multi-mode ordered operator expansions 

The multi-mode displacement operator is defined as the product of one-mode displace- 
ment operators 

where ak and ai are the boson annihilation and creation operators of the kth mode, 
obeying the standard commutation relations 

The displacement operators are orthogonal in the following sense 

Tr[D({ak})D-’({pk))l = n n6(2)(ak-pk). (2.3) 
k 

In addition, an arbitrary operator F whose Hilbert-Schmidt norm is finite, ie 
[Tr(FtF)]”2 < 03, can be expanded in terms of the displacement operators 

(2.4) 

the weight function f({&}) being given by 

f ({ tk}) = Tr[ FD({ t k} )I* (2.5) 

In order to prove the relations (2.3H2.5) and other theorems of this section, one can 
proceed in complete analogy to the single-mode case (Cahill and Glauber 1969a, b). 
In the case of finite number of modes, k = 1,2,. . . , M ,  an integral such as (2.4) is well 
defined. Some complications arising for an infinite number of degrees of freedom, 
which is usually the case where the electromagnetic field is involved, can be circumvented 
by applying a limiting procedure (Klauder and Sudarshan 1968). To this end, the 
condition 
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for the allowed sequences {ak} is adopted. The integrals over infinitely many variables 
are to be understood as the limits M + x, over truncated sequences { % k , M } .  where 
ffk,M E Zk, for k < M ,  and a k , M  = 0, for k > M. 

We define the s-ordered displacement operator as 

from which the s-ordered products of the creation and annihilation operators can be 
generated. If we expand each factor in (2.6), we can write 

Since the creation and annihilation operators belonging to different modes commute, 
this can be also written as 

The multimode s-ordered product in (2.8) is defined equivalently as the multiple deriva- 
tive of (2.6) 

{ [at]n[a]m}s n (al)”La;k 
{ k  1 s  

(2.9) 

evaluated at {ak} = 0. 

s-ordered products 
Let us now consider the problem of expanding an operator F as a power series in the 

(2.10) 

Broadly speaking, the expansion is convergent for orders that are closer to normal 
order (s = 1) than to symmetric order (s = 0). The expansion coefficients are given 
explicitly as 

f ( { n k } ,  {mk}? = n (nk!mk!)-l jTr[FD({<k). - s ) l ( - t k ) ” k ( t k * ) m k  d2{<k/n}. (2.1 1) 

Integral expansions for operators are introduced by means of the operator T({ak}, s) 
which is a complex Fourier transform of the operator D({@k}, s) 

k 

The integral expansion for an arbitrary operator is 

(2.12) 

(2.13) 

(2.14) 
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The usefulness of these expressions comes from the relationship between the coefficients 
(2.11) and the weight function (2.14). The latter is the same function of the numbers { c l ; )  

and {ak) as an operator F,  represented by f({r,), -s), is of the operators { c l ; }  and {ak}. 
In other words, we have 

f({clk)5 = 1 f(ink)? {mk}, n (r,*)”ka?k 
(nk)*(mk)  k 

which means that the operator-function correspondence 

involves the interchange 

(2.15) 

(2.16) 

(2.17) 

This correspondence, referred to as the C(s) correspondence, will form the basis for 
applications. We note, in particular, 

D({sk), 7 n exp(4kcc: - < t c l k )  (2.18) 
k 

which will permit later a simple representation of the characteristic functional. 

3. Characteristic functional and probability functional 

The theory will be formulated in terms of the positive and negative frequency field 
operators A;’(x) and AL-)(x). These are given as the linear combinations of the 
annihilation and creation operators, respectively. 

A; ’(X) = U,(& k)ak, 

where the functions u, (x ,k )  depend on a specific choice of the operators A,(x). For 
example, if A,(x) represents the vector potential obeying the transversality condition, 
we have (in Heaviside units) 

u,(x, k) = c ~ UkP(r) e-iwkt ( 2tk)1’2 

where ok = ck, and the mode functions Uk(r) form an orthonormal and complete set 
of solutions to the Helmholtz equation. 

If A,(x)  denotes the detection operator (Mandel 1964, 1966), then 

u,(x, k) = L-3‘2 eF’(k) eik.r (3.3) 
where the superscript s denotes the polarization index, and k = ( k ,  s). 

From the commutation relations (2.2), it follows that the commutator 

K,,(x,  x‘) = [Al+’(x), A:-’(x’)] 

= 1 U&, k)u?(x’k) 
k 

is a c number. 

(3.4) 
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The state of radiation being characterized by the density operator p, we define the 
s-ordered quantum characteristic functional of the electromagnetic field as follows. 

@[i(x)ls] = Tr(p exp{(i, A ( - ) ) - ( [ * .  A‘+))+-$K[C*, Cl}) (3.5) 

where the abbreviations 

(i, A ( - ) )  = 1 C*(x)AL-)(x) d4x 

have been used. In equations (3.6) summation over repeated indices is understood. In 
view of equations (3.1) and (3.4), we can regard the characteristic functional as a function 
of a denumerable set of variables { [k} 

where 

Thus, the characteristic functional can also be defined as an expectation value of the 
displacement operator. 

Let the density operators possess an integral representation of the form (2.13) 

The weight function W({ak,s) associated with p by C(-s) correspondence is given as the 
trace 

w({tlk}, = TrbT({ak)* s)l. (3.10) 

Inserting (3.9) into ( 3 . 9  we obtain 

It follows from equation (2.18), and from the linearity of the field operators in creation 
and annihilation operators, that the weight function associated by the C(s) correspond- 
ence with the exponential operator in the integrand of (3.11) is found by the interchange 
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The functions VJx) and V,*(x) arise from the operators Al+)(x)and A'-)(x) by replacing 
the operators ak and a1 in (3.1) by their eigenvalues ak and a:, respectively 

Vp(x) E Vp(X3 {ak}) = u,(x, k)ak 
k 

v,(x) V;(x, {ak}) = $(x, k)a:. 
k 

By virtue of (2.14), (3.1 l), and (3.12), we obtain 

(3.13) 

(3.14) 
Equivalently, equation (3.14) can be written in the form 

(3.15) 

where i k  are defined by equation (3.8). For s = 1 ,  W({ak}, s) is to be identified with the 
weight function P{ak} specifying the diagonal representation of the density operator 
( P  representation), and from equation (3.15) we get a relation between P{ak} and the 
normally ordered characteristic functional. This relation was already derived earlier 
within the framework of functional formalism developed for normally ordered electro- 
magnetic-field operators (Zardecki 1970). 

By the Fourier inversion formula, we obtain from equation (3.15): 

(3.16) 

which establishes an equivalence of statistical descriptions based on the weight function 
and on the characteristic functional. For an infinite number of modes the Fourier 
transformation is obtained from an ordinary M-dimensional Fourier integral by the 
limiting transition M -+ x. A class of s-ordered probability functionals of the field 
can be introduced by making use of the delta functional 

As usual, V(x)] denotes a complex functional Fourier transform of unity. 

6(2)[ V(x)] = Sexp((V, i*)-(V*, i)) d2[i/nl 

(3.17) 

(3.18) 

where d21 is an integration element in function space over the real and imaginary parts 
of the function ((x). 

With the help of the probability functional (3.17) the characteristic functional (3.14) 
can be written as a functional integral 

@,[ilsl = / P[Vsl exp((i, v*)-(i*, d2v.  (3.19) 

We observe that there are distinct characteristic functionals and probability functionals 
corresponding to each value of the order parameter s. The problem of existence of the 
probability functional is related to the possibility of construction of the weight function 
w({ak}? 
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By applying the Fourier inversion formula. we obtain from (3.19). 

P[Vls] = @[i ls]  exp((V, [*) - (V*,  [)) d2[i/n2] (3.20) 

which is another way of introducing the probability functional. The pair of functional 
Fourier transforms (3.19) and (3.20) exists if one of the functionals @ or P is square 
integrable (Symanzik 1954). 

The quantum correlation function is defined as an expectation value of the s-ordered 
product of the field operators 

i 

G!v.M'(X1.. . . . X , ~ ; X , , . + ~ . . . . . X . ~ + M )  

= Tr[p{A(-'(x,). . . A(- ' (X ,%~)A( ' ' (X ,~+  l ) .  . . A ' + ' ( . X , ~ + ~ ) } ~ ] .  (3.21) 

For the sake of brevity we use now x to denote both the space-time point Y. t and the 
tensor index p. Equation (3.21) can also be written as a functional integral 

1. . . . , x , y  ; .X,w + 1 .  . . . , x,v + M) G';Y 1 MI( 

(3.22) 

By functional differentiation of the characteristic functional, the entire set of s-ordered 
correlation functions is derived 

The relation between an arbitrary s-ordered correlation function and the t-ordered 
correlation function is derived from the relation between the corresponding character- 
istic functionals. We write 

@[i(x)bI = exp{i(s - t)K[i*, ilj@[i(x)ltl (3.24) 

which yields on differentiation with respect to [(xi), i = 1,.  . . , N ,  and using the Leibniz 
rule for the Nth derivative of a product 

~"@,[11sl -~ 

61(.X1). . . 6i(x.v) 

= $ [y)(yr(h i * ( x ' ) K ( x ' .  x,)dx' exp{g(s-t)K[[*. Cl). 
i = o  

This is to be differentiated now with respect to ( - {*(xJ), i = N + 1.. . . . N + M .  

GT3M'( .~  , . . . , .xv ; xN + , . . . , xAv + M) 

Since {(x) is ultimately put equal to zero, we obtain the formula 

(3.25) 

(3.26) 
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where the symbol ( N ,  M),,,in denotes the smaller of the integers N and M ,  and the second 
summation runs over all permutations of the coordinates x l . .  . . , x l .  

4. Examples: thermal and coherent fields 

The weight functions specifying the density operator corresponding to different values 
of the order parameter are related by a convolution law which is a simple generalization 
of the result obtained by Cahill and Glauber (1969b) in the case of one-mode field. If 
Re s < Re t ,  we have 

This formula enables one to write immediately the weight functions describing thermal 
and fully coherent fields. 

4.1. Thermal radiation 

The weight function specifying the P representation ( t  = 1) of the density operator is 
given as 

and from equation (4.1) we obtain 

(4.3) 

which arises from (4.2) when the average number of photons in the kth mode (nk)  is 
replaced by ( nk) + $( 1 - s) (Perina 197 1). 

The characteristic functional is evaluated from equation (3.15) : 

(4.4) 

where 

The s-ordered correlation function is 

Thus, the characteristic functional becomes 

1 @,[ils] = exp (- [(x)GSt3')(x, x')[*(x') dx dx' 

and the probability functional is obtained by the Fourier inversion formula (3.20) 

Gs- '(x, x')V(x)V*(x') dx dx' 

(4.7) 

(4.8) 

where are the eigenvalues of the kernel G,(x, x') and G;'(x, x') is reciprocal kernel. 
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4.2. Fully coherent jields 

In this case we have 

and from (4.1) we obtain 

(4.9) 

(4.10) 

Formally, this is a function specifying the P representation (s = I), corresponding to the 
superposition of coherent and thermal fields with the mean number of thermal photons 
in the kth mode equal to 1 - s. The characteristic functional is 

where 

Equivalently, we can write 

where 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

5. Photonnumber and photoncounting distributions 

The developed formalism affords a straightforward method of dealing with the distribu- 
tions of photons and photoelectrons. The probability for an arbitrary distribution of 
photons { nk}  among the different modes is given by the expectation value of the projection 
operator 

P ( { n k } )  = T r b l { n k } ) < { n k } l l .  (5.1) 

Making use of (3.9) this becomes 

p ( { n k } )  = w ( { a k } ?  s ) < { n k } l T ( { a k } , - s ) { n k } )  d 2 { a k / n } .  (5.2) 

The matrix elements of the operator T ( a k ,  - s) are explicitly given by (Cahill and Glauber 
1969a) 

(5.3) 
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Here and in the following the Laguerre polynomials are defined by the generating 
function 

CO 

From (5.2) and (5.3) we finally obtain 

(5.4) 

The probability distribution p(n)  of the number of photons n within a given volume Vof 
space at time t is obtained by summing (5.5) over all possible sets {nk} 

pphot(H) p({nk}) (5.6) 
(Ilk) 

with the subsidiary condition & nk = n. 

and Ryzhik 1965) 
With the help of the addition theorem for the Laguerre polynomials (Gradshteyn 

M 

we get 

where M is the number of modes and 
M 

U = 1 Iuk12s  
k = l  

If we introduce the distribution function 

Equation (5.9) may be written in the form 

(5.10) 

Equation (5.10), derived by Perina and Horak (1969, 1970), is termed the generalized 
photodetection equation. 

The factorial moment generating function of ppho,(n), defined by 

n = O  

by virtue of (5.10) and (5.4) has the form 

(5.1 1)  

= [1 -$(I - s ) A ] - ~  )dU. (5.12) 
1 -g1 -s)A 



2208 A Zardecki 

In the case of thermal light, equation (5.12) may be used as a starting point of the Mandel 
type approximation for the distribution of photons (Zardecki et a1 1973). 

The factorial moment generating function of the photocount distribution An), 
defined by a formula analogous to (5.11) is given in terms of the normally ordered 
(s = 1) correlation functions (Glauber 1965). 

m M 

n = O  n. j =  1 
G(A) = i . . . [ G:","(x', , . . . , x;, x i , .  . . , x;) n R(x;, x;) dx; dx; (5.13) 

where R(x', x") is the photodetector response function. 

the relation 
In order to express G(A) in terms of arbitrarily ordered correlation functions, we use 

G:"3"'(~l, .  . . , x,; x,+ 1 , .  . . , xZn) 
1 

- c n K(x,(j)xj)G: - I v n -  ' (xi + 1 9 . . . > xn ; X, t I - 1 3 . ., XZ,) 
l = O  P j = l  

(5.14) 

When the correlation functions on the right-hand side of (5.14) are written in the form 

= (;j(;j(?r 
which follows from (3.26). 

of (3.22), we obtain on combining this with (5.13) 

where 

K = Sf K(x', x")R(x', x") dx' dx" 

R = ss V*(x')R(x', x")V(x*) dx' dx". 

We now use the identity (Cahill and Glauber 1969a) 

to transform (5.1 1) to the form 

(1 - S ) K  

Making use of (5.4) we find 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

For a broad-band detector and plane quasi-monochromatic waves normally incident 
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on a photocathode, R becomes proportional to the integrated light intensity (Perina 
1971) 

R = a W = a JoTl(t) dt (5.20) 

where a denotes the detector photosensitivity. 
Equation (5.19) with R given by (5.20), becomes identical with equation (5.8) in the 

case of a finite number of M modes, if we put a = IC = 1. In fact, the functional integral 
in (5.19) goes over into an M-dimensional integral and we have 

(exp ( -  1-j(1 -s)% 
G(A) = [l -)A(l -s)IM (5.21) 

If we put s = 1, this yields the well known formula for the normally ordered generating 
function 

(5.22) 

I t  is seen that apart from a constant factor, equation (5.19) coincides formally with (5.22) 
if we replace a in (5.22) by a/[l -$Aic(l -s)] and make a corresponding change in the 
integration element. This formal similarity permits us to write immediately a formula 
expressing G(A) through the characteristic 'functional of the field (Zardecki 1971) : 

(5.23) 
J 

For Gaussian fields the characteristic functional is given by (4.7) and the functional 
integration in (5.23) can be effectively performed. The results corresponding to various 
physical situations derived earlier for s = 1 (Zardecki 1971) are readily extended for 
arbitrary ordering. 
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